Add like
Add dislike
Add to saved papers

Cognitive deficits induced by combined exposure of stress and alcohol mediated through oxidative stress-PARP pathway in the hippocampus.

Several studies reported that stress can enhance the consumption of alcohol in humans and animals. However, the combinatorial effect of stress and alcohol on cognitive function and neurochemical alterations is quite understudied. In the present study, we have elucidated the involvement of oxidative stress-PARP cascade in alcohol and restraint stress (RS)-exposed animals using a PARP inhibitor, 1,5-isoquinolinediol (3mg/kg for 14days). Male Swiss albino mice were given alcohol (ALC) or RS (2h per day) or both in ALC+RS group for 28days. Behavioral analysis revealed cognitive dysfunction in ALC+RS group. Furthermore, oxidative stress and raised level of pro-inflammatory cytokines were found in the hippocampus region of ALC+RS group. Semi-quantitative reverse transcriptase PCR showed overactivation of PARP-1 gene in ALC+RS group. 1,5-isoquinolinediol treatment significantly prevented cognitive deficits and aforementioned neurochemical alterations. Overall, our findings showed that ALC+RS exerted deleterious effects on the hippocampus which involves oxidative stress-PARP overactivation cascade.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app