Add like
Add dislike
Add to saved papers

Automated quantification of metabolites in blood-derived samples by NMR.

NMR is widely applied in the field of metabolomics due to the quantitative nature of the technology and the reproducible data generated. However, because of severe spectral crowding, quantifying individual metabolites in body fluids such as serum and plasma remains a challenge. In this study, a method to automatically annotate and quantify a number of small metabolites in human serum and EDTA plasma is introduced. It combines the superior signal-to-noise ratio of the commonly applied CPMG and NOESY1D pulse sequences with the superior resolution of the 2D JRES experiment to construct a model that extracts the metabolite concentrations directly from the 1D spectra without tedious deconvolution. The performance of the method was assessed by comparing the calculated areas of the various glucose peaks with known clinical values, by comparing several peaks of the same metabolite (extracted versus non-extracted), and by comparing areas obtained from various NMR pulse sequences. Additionally, the models were tested on independent datasets. It was found that for many metabolites peaks could be assigned that show a consistent behavior, indicating a precise quantification. The same method should be applicable to other biofluids with a stable composition and pH, such as CSF fluid, cell extracts, and cell media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app