Add like
Add dislike
Add to saved papers

A critical comparison of Lagrangian methods for coherent structure detection.

Chaos 2017 May
We review and test twelve different approaches to the detection of finite-time coherent material structures in two-dimensional, temporally aperiodic flows. We consider both mathematical methods and diagnostic scalar fields, comparing their performance on three benchmark examples: the quasiperiodically forced Bickley jet, a two-dimensional turbulence simulation, and an observational wind velocity field from Jupiter's atmosphere. A close inspection of the results reveals that the various methods often produce very different predictions for coherent structures, once they are evaluated beyond heuristic visual assessment. As we find by passive advection of the coherent set candidates, false positives and negatives can be produced even by some of the mathematically justified methods due to the ineffectiveness of their underlying coherence principles in certain flow configurations. We summarize the inferred strengths and weaknesses of each method, and make general recommendations for minimal self-consistency requirements that any Lagrangian coherence detection technique should satisfy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app