Add like
Add dislike
Add to saved papers

Effects of DNase I coating of titanium on bacteria adhesion and biofilm formation.

The removal of mature biofilm from the surface of implant has been a formidable challenge in treating implant-associated infection. Prevention of biofilm formation rather than removal of existing biofilm is a more effective approach. Immobilization of biofilm-dispersing enzymes on material surfaces is regarded as one of the most promising strategies. Deoxyribonuclease I (DNase I) can degrade extracellular DNA (eDNA) and then destabilize biofilm. In this study, DNase I was immobilized on a titanium (Ti) surface by using dopamine as an intermediate. The water contact angle, SEM, EDS and XPS confirmed that DNase I was successfully coated to the bare Ti and the final coating was highly hydrophilic. The DNase I coating showed significant effects in preventing Streptococcus mutans (S. mutans) and Staphylococcus aureus (S. aureus) adhesion and biofilm formation over a time span of 24h. The favorable biocompatibility was demonstrated by cell study in vitro. In addition, cell adhesion results suggested that DNase I coating had the potential to facilitate MC3T3-E1 cell attachment. DNase I coating with anti-infection ability and biocompatibility has great potential for increasing success rates of implant applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app