Add like
Add dislike
Add to saved papers

The role of new zinc incorporated monetite cements on osteogenic differentiation of human mesenchymal stem cells.

β-Tricalcium phosphate particles were sintered in the presence of different amounts (0-0.72mol) of zinc oxide (ZnO) to prepare zinc doped β-TCP (Znβ-TCP) particles for further use in novel monetite (DCPA: CaHPO4 ) zinc incorporated bone cements with osteogenic differentiation potential towards human mesenchymal stem cells (hMSCs). XRD analysis of zinc incorporated cements prepared with β-TCP reagent particles doped with different amount of ZnO (i.e. 0.03, 0.09 and 0.18mol ZnO) revealed the presence of unreacted Znβ-TCP and monetite. Furthermore, it was shown that zinc ions preferentially occupied the β-TCP crystal lattice rather than the monetite one. Release experiments indicated a burst release of ions from the different fabricated cements during the first 24h of immersion with zinc concentrations ranging between 85 and 100% of the total concentration released over a period of 21days. Cell proliferation significantly increased (P<0.05) on zinc incorporated monetite respect to control samples (Zinc-free cement) at 7 and 14days post seeding. The expression of Runx-2 was significantly up regulated (P<0.05) in the case of cells seeded on monetite prepared with β-TCP doped with 0.03 moles of ZnO. On the other hand, the cell mineralization as well as the expression of osteogenic marker genes ALP and OSC decreased significantly (P<0.05) at 14days post cell seeding. In conclusion, these results suggest that the zinc ions released from the cements during the first 24h of culture played a critical role in regulating the osteogenic differentiation of hMSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app