Add like
Add dislike
Add to saved papers

In vitro proliferation and differentiation of human bone marrow mesenchymal stem cells into osteoblasts on nanocomposite scaffolds based on bioactive glass (64SiO 2 -31CaO-5P 2 O 5 )-poly-l-lactic acid nanofibers fabricated by electrospinning method.

Electrospinning method was employed for fabrication of SiO2 -CaO-P2 O5 bioactive glass (BG) nanofibers, poly-l-lactic acid (PLLA) nanofibers and nanocomposite scaffolds fabricated from as-prepared nanofibers. Characterization of the prepared nanofibers and scaffolds by XRD, FTIR, and SEM techniques revealed the formation of nanofibers with mean diameter of about 500nm and fully fibrous scaffolds with porous structure and interconnected pores. The growth, viability and proliferation of cultured human bone marrow mesenchymal stem cells in the fabricated nanofibers and bioactive glass-poly-l-lactic acid (BG-PLLA) nanocomposite scaffolds were studied using various biological assays including MTT, ALP activity, calcium deposit content, Alizarin red staining, and RT-PCR test. Based on the obtained results, incorporation of BG nanofibers in the nanocomposite scaffolds causes the better biological behavior of the scaffolds. In addition, three-dimensional and fibrous-porous structure of the scaffolds further contributes to their improved cell behavior compared to the components.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app