Add like
Add dislike
Add to saved papers

Impaired coordination of nucleophile and increased hydrophobicity in the +1 subsite shift levansucrase activity towards transfructosylation.

Glycobiology 2017 May 31
Bacterial levansucrases produce β(2,6)-linked levan-type polysaccharides using sucrose or sucrose analogues as donor/acceptor substrates. However, the dominant reaction of Bacillus megaterium levansucrase (Bm-LS) is hydrolysis. Single domain levansucrases from Gram-positive bacteria display a wide substrate-binding pocket with open access to water, challenging engineering for transfructosylation-efficient enzymes. We pursued a shift in reaction specificity by either modifying the water distribution in the active site or the coordination of the catalytic acid/base (E352) and the nucleophile (D95), thus affecting the fructosyl-transfer rate and allowing acceptors other than water to occupy the active site. Two serine (173/422) and two water-binding tyrosine (421/439) residues located in the first shell of the catalytic pocket were modified. Library variants for positions 173, 421 and 422, which coordinate the position of D95 and E352, show increased transfructosylation (30-200%) and modified product spectra. Substitutions at position 422 have a higher impact on sucrose affinity, while changes at position 173 and 421 have a strong effect on the overall catalytic rate. As most retaining glycoside hydrolases (GHs) Bm-LS catalyzes hydrolysis and transglycosylation via a double displacement reaction involving two-transition states (TS1 and TS2). Hydrogen bonds of D95 with the side chains of S173 and S422 contribute a total of 2.4 kcal mol-1 to TS1 stabilization, while hydrogen bonds between invariant Y421, E352 and the glucosyl C-2 hydroxyl-group of sucrose contribute 2.15 kcal mol-1 stabilization. Changes at Y439 render predominantly hydrolytic variants synthesizing shorter oligosaccharides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app