Add like
Add dislike
Add to saved papers

Network-assisted target identification for haploinsufficiency and homozygous profiling screens.

Chemical genomic screens have recently emerged as a systematic approach to drug discovery on a genome-wide scale. Drug target identification and elucidation of the mechanism of action (MoA) of hits from these noisy high-throughput screens remain difficult. Here, we present GIT (Genetic Interaction Network-Assisted Target Identification), a network analysis method for drug target identification in haploinsufficiency profiling (HIP) and homozygous profiling (HOP) screens. With the drug-induced phenotypic fitness defect of the deletion of a gene, GIT also incorporates the fitness defects of the gene's neighbors in the genetic interaction network. On three genome-scale yeast chemical genomic screens, GIT substantially outperforms previous scoring methods on target identification on HIP and HOP assays, respectively. Finally, we showed that by combining HIP and HOP assays, GIT further boosts target identification and reveals potential drug's mechanism of action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app