JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

UCP2 upregulation promotes PLCγ-1 signaling during skin cell transformation.

Uncoupling protein 2 (UCP2), whose physiological role is to decrease mitochondrial membrane potential and reactive oxygen species (ROS) production, is often overexpressed in human cancers. UCP2 upregulation has recently been proposed as a novel survival mechanism for cancer cells. However, until now, how exactly UCP2 promotes tumorigenesis remains inconclusive. Based on a widely used skin cell transformation model, our data demonstrated that UCP2 differentially regulated ROS. UCP2 upregulation decreased superoxide whereas it increased hydrogen peroxide production with concomitant increase in the expression and activity of manganese superoxide dismutase (MnSOD), the primary mitochondrial antioxidant enzyme. Furthermore, hydrogen peroxide was responsible for induction of lipid peroxidation, and PLCγ-1 activation in UCP2 overexpressed cells. Additionally, PLCγ-1 activation enhanced skin cell transformation, and pharmacological, and siRNA mediated inhibition of PLCγ-1, markedly reduced colony formation, and 3D cell growth. Moreover, hydrogen peroxide scavenger, catalase, suppressed lipid peroxidation, and dampened PLCγ-1 activity. Taken together, our data suggest that (i) UCP2 is an important regulator of mitochondrial redox status and lipid signaling; (ii) hydrogen peroxide might mediate UCP2's tumor promoting activity; and (iii) pharmacological disruption of PLCγ-1 and/or hydrogen peroxide may have clinical utility for UCP2 overexpressed cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app