Add like
Add dislike
Add to saved papers

Simultaneous spin-echo and gradient-echo BOLD measurements by dynamic MRS.

NMR in Biomedicine 2017 September
This study aimed to dissociate the intravascular and extravascular contributions to spin-echo (SE) and gradient-echo (GE) blood oxygenation level-dependent (BOLD) signals at 7 T, using dynamic diffusion-weighted MRS. We simultaneously acquired SE and GE data using a point-resolved spectroscopy sequence with diffusion weightings of 0, 600, and 1200 s/mm2 . The BOLD signals were quantified by fitting the free induction decays starting from the SE center to a mono-exponential decay function. Without diffusion weighting, BOLD signals measured with SE and GE increased by 1.6 ± 0.5% (TESE  = 40 ms) and 5.2 ± 1.4% (nominal TEGE  = 40 ms) during stimulation, respectively. With diffusion weighting, the BOLD increase during stimulation measured with SE decreased from 1.6 ± 0.5% to 1.3 ± 0.4% (P < 0.001), whereas that measured by GE was unaffected (P > 0.05); the post-stimulation undershoots in the BOLD signal time courses were largely preserved in both SE and GE measurements. These results demonstrated the feasiblity of simultaneous SE and GE measurements of BOLD signals with and without interleaved diffusion weighting. The results also indicated a predominant extravascular contribution to the BOLD signal time courses, including post-stimulation undershoots in both SE and GE measurements at 7 T.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app