Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Role of Mitogen Activated Protein Kinase and Maturation Promoting Factor During the Achievement of Meiotic Competency in Mammalian Oocytes.

The oocyte quality remains as one of the major problems associated with poor in vitro fertilization (IVF) rate and assisted reproductive technology (ART) failure worldwide. The oocyte quality is dependent on its meiotic maturation that begins inside the follicular microenvironment and gets completed at the time of ovulation in most of the mammalian species. Follicular oocytes are arrested at diplotene stage of first meiotic prophase. The resumption of meiosis from diplotene arrest, progression through metaphase-I (M-I) and further arrest at metaphase-II (M-II) are important physiological requirements for the achievement of meiotic competency in mammalian oocytes. The achievement of meiotic competency is dependent upon cyclic stabilization/destabilization of maturation promoting factor (MPF). The mitogen-activated protein kinase3/1 (MAPK3/1) modulates stabilization/destabilization of MPF in oocyte by interacting either with signal molecules, transcription and post-transcription factors in cumulus cells or cytostatic factors (CSFs) in oocyte. MPF regulates meiotic cell cycle progression from diplotene arrest to M-II arrest and directly impacts oocyte quality. The MAPK3/1 activity is not reported during spontaneous meiotic resumption but its activity in cumulus cells is required for gonadotropin-induced oocyte meiotic resumption. Although high MAPK3/1 activity is required for the maintenance of M-II arrest in several mammalian species, its cross-talk with MPF remains to be elucidated. Further studies are required to find out the MAPK3/1 activity and its impact on MPF destabilization/stabilization during achievement of meiotic competency, an important period that decides oocyte quality and directly impacts ARTs outcome in several mammalian species including human. J. Cell. Biochem. 119: 123-129, 2018. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app