Add like
Add dislike
Add to saved papers

Development of a Wearable Controller for Gesture-Recognition-Based Applications Using Polyvinylidene Fluoride.

This paper reports on a wearable gesture-based controller fabricated using the sensing capabilities of the flexible thin-film piezoelectric polymer polyvinylidene fluoride (PVDF) which is shown to repeatedly and accurately discern, in real time, between right and left hand gestures. The PVDF is affixed to a compression sleeve worn on the forearm to create a wearable device that is flexible, adaptable, and highly shape conforming. Forearm muscle movements, which drive hand motions, are detected by the PVDF which outputs its voltage signal to a developed microcontroller-based board and processed by an artificial neural network that was trained to recognize the generated voltage profile of right and left hand gestures. The PVDF has been spatially shaded (etched) in such a way as to increase sensitivity to expected deformations caused by the specific muscles employed in making the targeted right and left gestures. The device proves to be exceptionally accurate both when positioned as intended and when rotated and translated on the forearm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app