Add like
Add dislike
Add to saved papers

Intrinsic Bond Energies from a Bonds-in-Molecules Neural Network.

Neural networks are being used to make new types of empirical chemical models as inexpensive as force fields, but with accuracy similar to the ab initio methods used to build them. In this work, we present a neural network that predicts the energies of molecules as a sum of intrinsic bond energies. The network learns the total energies of the popular GDB9 database to a competitive MAE of 0.94 kcal/mol on molecules outside of its training set, is naturally linearly scaling, and applicable to molecules consisting of thousands of bonds. More importantly, it gives chemical insight into the relative strengths of bonds as a function of their molecular environment, despite only being trained on total energy information. We show that the network makes predictions of relative bond strengths in good agreement with measured trends and human predictions. A Bonds-in-Molecules Neural Network (BIM-NN) learns heuristic relative bond strengths like expert synthetic chemists, and compares well with ab initio bond order measures such as NBO analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app