Add like
Add dislike
Add to saved papers

Mitigating potential of Melissa officinale against As(3+)-induced cytotoxicity and transcriptional alterations of Hsp70 and Hsp27 in fish, Channa punctatus (Bloch).

The mitigating potential of Melissa officinale (MO) (Lamiaceae) against arsenite (As(3+))-induced oxidative stress, cytogenotoxicity, and expression of stress genes in fish, Channa punctatus (Bloch), teleost, was explored. After confirming the composition of MO extract, caffeic acid (0.96%), hesperidin (1.73%), naringenin (7.70%), lutenolin (3.29%), kaempferol (11.46%) and hesperetin (6.24%), by HPLC-PDA analysis, the experiment was set up in six groups (G1-G6), each containing 10 specimens. Blood, muscle, gills and liver tissues of control and treated fishes were excised at an interval of 24 till 96 h. Ameliorative potential of MO was confirmed by satisfactory restoration of altered activities of malondialdehyde, hydrogen peroxide, superoxide dismutase, catalase, glutathione peroxidise, glutathione reductase, reduced glutathione and ascorbate peroxidase in G4, G5 and G6, co-exposed with 96 h-LC50/10 As(3+) with MO. A significant (p < 0.05) recovery in the frequencies of cytogenotoxic markers, micronuclei, disintegrated nucleus and echinocytes, which were expressed significantly (p < 0.05) in G3 exposed to sub-lethal concentration of ATO alone, was recorded in fish groups (G4, G5 and G6) together treated with 96 h-LC50/10 of ATO and 2, 4 and 8 ppm of MO, respectively. Moreover, the expression of Hsp70 gene was downregulated (2.29-fold); whereas, Hsp27 gene was upregulated (1.16-fold) in G6, the group co-exposed with 96 h-LC50/10 As(3+) with 8 ppm of MO in comparison with G3 (3.11-fold for Hsp70; 0.51-fold for Hsp27) after 96 h of exposure period. Thus, it can be inferred that the MO at its tested concentration can be effectively used to mitigate As(3+) generated toxicities in C. punctatus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app