Add like
Add dislike
Add to saved papers

Characterization of Inducible ccdB Gene as a Counterselectable Marker in Escherichia coli Recombineering.

Recombineering is a homologous-based DNA cloning and modification technique. Recombineering-mediated chromosomal gene knock-in usually involves a selectable/counterselectable cassette. Though a variety of selectable/counterselectable cassettes were developed; however, a specifically designed gene deletion strain or minimal medium is often required. Herein, we describe a novel selectable/counterselectable cassette Plac -ccdB-aacC1 in which aacC1 (gentamicin resistance gene) is used as the selectable marker for the homologous arm-flanked cassette knock-in, while the IPTG inducible ccdB gene is used as the counterselectable marker for chromosomal gene knock-in. The counterselection is achieved via supplementing 1 mM IPTG in the LB agar medium. An oligonucleotide designed to evade the mismatch repair system was utilized to engineer an Escherichia coli DH10B-derived gyrA462 strain that was used to as the host for the plasmid harboring the Plac -ccdB-aacC1 cassette. By using the Plac -ccdB-aacC1 cassette, a linear-linear homologous recombination (LLHR) system was generated by knocking a 6.2 kb araC-PBAD -redγ-recET-recA DNA fragment into the E. coli DH10B chromosome. The functional of the LLHR recombineering system was characterized by cloning of the target DNA from PCR product as well as from the genomic DNA mixture. The Plac -ccdB-aacC1 cassette will be a useful tool in E. coli recombineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app