JOURNAL ARTICLE
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

An efficient direct competitive nano-ELISA for residual BSA determination in vaccines.

A simple, fast, and highly sensitive direct competitive enzyme-linked immunosorbent assay (ELISA) based on bovine serum albumin (BSA) antigen labeled amine-terminated silicon dioxide (SiO2 -NH-BSA) nanoparticles was developed to determine residual BSA in vaccines. As nano-ELISA using nanomaterials with a very high surface-to-volume ratio has emerged as a promising strategy, SiO2 -NH-BSA nanoparticles were prepared in this study by the coupling of BSA to SiO2 nanoparticles modified with amidogen, followed by the quantification of BSA via a direct competitive binding of BSA-antigen-labeled SiO2 nanoparticles to anti-BSA antibody conjugated with horseradish peroxidase. The validation study showed that the linear range of this method was from 1 to 90 ng/mL (r = 0.998) and the limit of detection was 0.67 ng/mL. The intra-assay and interassay coefficients of variation were less than 10% at three concentrations (10, 40, and 70 ng/mL), and the recovery was 92.4%, indicating good specificity. As a proof of principle, this new method was applied in the analysis of residual BSA in five different vaccines. Bland-Altman plots revealed that there was no significant difference in the accuracy and precision between our new method and the most commonly used sandwich ELISA. From the results taken together, the new method developed in this study is more sensitive and facile with lower cost and thus demonstrated potential to be applied in the quality control of biological products. Graphical Abstract Illustration of the procedures of the direct competitive enzyme immunoassay.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app