Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanisms of iron and copper-frataxin interactions.

Frataxin is a mitochondrial protein whose deficiency is the cause of Friedreich's ataxia, a hereditary neurodegenerative disease. This protein plays a role in iron-sulfur cluster biosynthesis, protection against oxidative stress and iron metabolism. In an attempt to provide a better understanding of the role played by metals in its metabolic functions, the mechanisms of mitochondrial metal binding to frataxin in vitro have been investigated. A purified recombinant yeast frataxin homolog Yfh1 binds two Cu(ii) ions with a Kd1 (CuII ) of 1.3 × 10-7 M and a Kd2 (CuII ) of 3.1 × 10-4 M and a single Cu(i) ion with a higher affinity than for Cu(ii) (Kd (CuI ) = 3.2 × 10-8 M). Mn(ii) forms two complexes with Yfh1 (Kd1 (MnII ) = 4.0 × 10-8 M; Kd2 (MnII ) = 4.0 × 10-7 M). Cu and Mn bind Yfh1 with higher affinities than Fe(ii). It is established for the first time that the mechanisms of the interaction of iron and copper with frataxin are comparable and involve three kinetic steps. The first step occurs in the 50-500 ms range and corresponds to a first metal uptake. This is followed by two other kinetic processes that are related to a second metal uptake and/or to a change in the conformation leading to thermodynamic equilibrium. Frataxin deficient Δyfh1 yeast cells exhibited a marked growth defect in the presence of exogenous Cu or Mn. Mitochondria from Δyfh1 strains also accumulated higher amounts of copper, suggesting a functional role of frataxin in vivo in copper homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app