Add like
Add dislike
Add to saved papers

LPS promotes resistance to TRAIL-induced apoptosis in pancreatic cancer.

BACKGROUND: Though TRAIL has been hailed as a promising drug for tumour treatment, it has been observed that many tumour cells have developed escape mechanisms against TRAIL-induced apoptosis. As a receptor of LPS, TLR 4, which is expressed on a variety of cancer cells, can be associated with TRAIL-resistance of tumour cells and tumour progression as well as with the generation of an anti-tumour immune response.

METHODS: In this study, the sensitivity to TRAIL-induced apoptosis as well as the influence of LPS-co-stimulation on the cell viability of the pancreatic cancer cell lines PANC-1, BxPC-3 and COLO 357 was examined by FACS analyses and a cell viability assay. Subsequently, the expression of TRAIL-receptors was detected via FACS analyses. Levels of osteoprotegerin (OPG) were also determined using an enzyme-linked immunosorbent assay.

RESULTS: PANC-1 cells were shown to be resistant to TRAIL-induced apoptosis. This was accompanied by significantly increased osteoprotegerin levels and a significantly decreased expression of DR4. In contrast, TRAIL significantly induced apoptosis in COLO 357 cells and to a lesser degree in BxPC-3 cells. Co-stimulation of COLO 357 as well as BxPC-3 cells combining TRAIL and LPS resulted in a significant decrease in TRAIL-induced apoptosis. In COLO 357 cells TRAIL-stimulation decreased the levels of OPG thereby not altering the expression of the TRAIL-receptors 1-4 resulting in a high susceptibility to TRAIL-induced apoptosis. Co-stimulation with LPS and TRAIL completely reversed the effect of TRAIL on OPG levels reaching a 2-fold increase beyond the level of non-stimulated cells resulting in a lower susceptibility to apoptosis. In BxPC-3, TRAIL stimulation decreased the expression of DR4 and significantly increased the decoy receptors TRAIL-R3 and TRAIL-R4 leading to a decrease in TRAIL-induced apoptosis. OPG levels remained unchanged. Co-stimulation with TRAIL and LPS further enhanced the changes in TRAIL-receptor-expression promoting apoptosis resistance.

CONCLUSIONS: Here it has been shown that TRAIL-resistance in pancreatic cancer cells can be mediated by the inflammatory molecule LPS as well as by different expression patterns of functional and non-functional TRAIL-receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app