JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Maternal Exercise Improves Glucose Tolerance in Female Offspring.

Diabetes 2017 August
Poor maternal diet can lead to metabolic disease in offspring, whereas maternal exercise may have beneficial effects on offspring health. In this study, we determined ifmaternal exercise could reverse the detrimental effects of maternal high-fat feeding on offspring metabolism of female mice. C57BL/6 female mice were fed a chow (21%) or high-fat (60%) diet and further divided by housing in static cages or cages with running wheels for 2 weeks prior to breeding and throughout gestation. Females were bred with chow-fed sedentary C57BL/6 males. High fat-fed sedentary dams produced female offspring with impaired glucose tolerance compared with offspring of chow-fed dams throughout their first year of life, an effect not present in the offspring from high fat-fed dams that had trained. Offspring from high fat-fed trained dams had normalized glucose tolerance, decreased fasting insulin, and decreased adiposity. Liver metabolic function, measured by hepatic glucose production in isolated hepatocytes, hyperinsulinemic-euglycemic clamps, liver triglyceride content, and liver enzyme expression, was enhanced in offspring from trained dams. In conclusion, maternal exercise negates the detrimental effects of a maternal high-fat diet on glucose tolerance and hepatocyte glucose metabolism in female offspring. The ability of maternal exercise to improve the metabolic health of female offspring is important, as this intervention could combat the transmission of obesity and diabetes to subsequent generations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app