JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Complement C5a-C5aR1 signalling drives skeletal muscle macrophage recruitment in the hSOD1 G93A mouse model of amyotrophic lateral sclerosis.

Skeletal Muscle 2017 June 2
BACKGROUND: The terminal pathway of the innate immune complement system is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Terminal complement activation leads to generation of C5a, which through its receptor, C5aR1, drives immune cell recruitment and activation. Importantly, genetic or pharmacological blockage of C5aR1 improves motor performance and reduces disease pathology in hSOD1G93A rodent models of ALS. In this study, we aimed to explore the potential mechanisms of C5aR1-mediated pathology in hSOD1G93A mice by examining their skeletal muscles.

RESULTS: We found elevated levels of C1qB, C4, fB, C3, C5a, and C5aR1 in tibialis anterior muscles of hSOD1G93A mice, which increased with disease progression. Macrophage cell numbers also progressively increased in hSOD1G93A muscles in line with disease progression. Immuno-localisation demonstrated that C5aR1 was expressed predominantly on macrophages within hSOD1G93A skeletal muscles. Notably, hSOD1G93A  × C5aR1-/- mice showed markedly decreased numbers of infiltrating macrophages, along with reduced neuromuscular denervation and improved grip strength in hind limb skeletal muscles, when compared to hSOD1G93A mice.

CONCLUSION: These results indicate that terminal complement activation and C5a production occur in skeletal muscle tissue of hSOD1G93A mice, and that C5a-C5aR1 signalling contributes to the recruitment of macrophages that may accelerate muscle denervation in these ALS mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app