Add like
Add dislike
Add to saved papers

An efficient method for significant motifs discovery from multiple DNA sequences.

Identification of transcription factor binding sites or biological motifs is an important step in deciphering the mechanisms of gene regulation. It is a classic problem that has eluded a satisfactory and efficient solution. In this paper, we devise a three-phase algorithm to mine for biologically significant motifs. In the first phase, we generate all the possible string motifs, this phase is followed by a filtering process where we discard all motifs that do not meet the constraints. And in the final phase, motifs are scored and ranked using a combination of stochastic techniques and [Formula: see text]-value. We show that our method outperforms some very well-known motif discovery tools, e.g. MEME and Weeder on well-established benchmark data suites. We also apply the algorithm on the non-coding regions of M. tuberculosis and report significant motifs of size 10 with excellent [Formula: see text]-values in a fraction of the time MEME and MoSDi did. In fact, among the best 10 motifs ([Formula: see text]-value wise) in the non-coding regions of M. tuberculosis reported by the tools MEME, MoSDi and ours, five were discovered by our approach which included the third and the fourth best ones. All this in 1/17 and 1/6 the time which MEME and MoSDi (respectively) took.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app