Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dispersion characteristics of the flexural wave assessed using low frequency (50-150kHz) point-contact transducers: A feasibility study on bone-mimicking phantoms.

Ultrasonics 2017 November
Guided waves-based techniques are currently under development for quantitative cortical bone assessment. However, the signal interpretation is challenging due to multiple mode overlapping. To overcome this limitation, dry point-contact transducers have been used at low frequencies for a selective excitation of the zeroth order anti-symmetric Lamb A0 mode, a mode whose dispersion characteristics can be used to infer the thickness of the waveguide. In this paper, our purpose was to extend the technique by combining a dry point-contact transducers approach to the SVD-enhanced 2-D Fourier transform in order to measure the dispersion characteristics of the flexural mode. The robustness of our approach is assessed on bone-mimicking phantoms covered or not with soft tissue-mimicking layer. Experiments were also performed on a bovine bone. Dispersion characteristics of measured modes were extracted using a SVD-based signal processing technique. The thickness was obtained by fitting a free plate model to experimental data. The results show that, in all studied cases, the estimated thickness values are in good agreement with the actual thickness values. From the results, we speculate that in vivo cortical thickness assessment by measuring the flexural wave using point-contact transducers is feasible. However, this assumption has to be confirmed by further in vivo studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app