Add like
Add dislike
Add to saved papers

Mitochondrial complex I bridges a connection between regulation of carbon flexibility and gastrointestinal commensalism in the human fungal pathogen Candida albicans.

PLoS Pathogens 2017 June
Efficient assimilation of alternative carbon sources in glucose-limited host niches is critical for colonization of Candida albicans, a commensal yeast that frequently causes opportunistic infection in human. C. albicans evolved mechanistically to regulate alternative carbon assimilation for the promotion of fungal growth and commensalism in mammalian hosts. However, this highly adaptive mechanism that C. albicans employs to cope with alternative carbon assimilation has yet to be clearly understood. Here we identified a novel role of C. albicans mitochondrial complex I (CI) in regulating assimilation of alternative carbon sources such as mannitol. Our data demonstrate that CI dysfunction by deleting the subunit Nuo2 decreases the level of NAD+, downregulates the NAD+-dependent mannitol dehydrogenase activity, and consequently inhibits hyphal growth and biofilm formation in conditions when the carbon source is mannitol, but not fermentative sugars like glucose. Mannitol-dependent morphogenesis is controlled by a ROS-induced signaling pathway involving Hog1 activation and Brg1 repression. In vivo studies show that nuo2Δ/Δ mutant cells are severely compromised in gastrointestinal colonization and the defect can be rescued by a glucose-rich diet. Thus, our findings unravel a mechanism by which C. albicans regulates carbon flexibility and commensalism. Alternative carbon assimilation might represent a fitness advantage for commensal fungi in successful colonization of host niches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app