Add like
Add dislike
Add to saved papers

Characterization of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione resistance in pyomelanogenic Pseudomonas aeruginosa DKN343.

Pyomelanin is a reddish-brown pigment that provides bacteria and fungi protection from oxidative stress, and is reported to contribute to infection persistence. Production of this pigment can be inhibited by the anti-virulence agent 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC). The Pseudomonas aeruginosa clinical isolate DKN343 exhibited high levels of resistance to NTBC, and the mechanism of pyomelanin production in this strain was uncharacterized. We determined that pyomelanin production in the clinical Pseudomonas aeruginosa isolate DKN343 was due to a loss of function in homogentisate 1,2-dioxygenase (HmgA). Several potential resistance mechanisms were investigated, and the MexAB-OprM efflux pump is required for resistance to NTBC. DKN343 has a frameshift mutation in NalC, which is a known indirect repressor of the mexAB-oprM operon. This frameshift mutation may contribute to the increased resistance of DKN343 to NTBC. Additional studies investigating the prevalence of resistance in pyomelanogenic microbes are necessary to determine the future applications of NTBC as an anti-virulence therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app