Add like
Add dislike
Add to saved papers

Non-standard radiotherapy fractionations delay the time to malignant transformation of low-grade gliomas.

Grade II gliomas are slowly growing primary brain tumors that affect mostly young patients. Cytotoxic therapies (radiotherapy and/or chemotherapy) are used initially only for patients having a bad prognosis. These therapies are planned following the "maximum dose in minimum time" principle, i. e. the same schedule used for high-grade brain tumors in spite of their very different behavior. These tumors transform after a variable time into high-grade gliomas, which significantly decreases the patient's life expectancy. In this paper we study mathematical models describing the growth of grade II gliomas in response to radiotherapy. We find that protracted metronomic fractionations, i.e. therapeutical schedules enlarging the time interval between low-dose radiotherapy fractions, may lead to a better tumor control without an increase in toxicity. Other non-standard fractionations such as protracted or hypoprotracted schemes may also be beneficial. The potential survival improvement depends on the tumor's proliferation rate and can be even of the order of years. A conservative metronomic scheme, still being a suboptimal treatment, delays the time to malignant progression by at least one year when compared to the standard scheme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app