JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Cellular Redox Profiling Using High-content Microscopy.

Reactive oxygen species (ROS) regulate essential cellular processes including gene expression, migration, differentiation and proliferation. However, excessive ROS levels induce a state of oxidative stress, which is accompanied by irreversible oxidative damage to DNA, lipids and proteins. Thus, quantification of ROS provides a direct proxy for cellular health condition. Since mitochondria are among the major cellular sources and targets of ROS, joint analysis of mitochondrial function and ROS production in the same cells is crucial for better understanding the interconnection in pathophysiological conditions. Therefore, a high-content microscopy-based strategy was developed for simultaneous quantification of intracellular ROS levels, mitochondrial membrane potential (ΔΨm) and mitochondrial morphology. It is based on automated widefield fluorescence microscopy and image analysis of living adherent cells, grown in multi-well plates, and stained with the cell-permeable fluorescent reporter molecules CM-H2DCFDA (ROS) and TMRM (ΔΨm and mitochondrial morphology). In contrast with fluorimetry or flow-cytometry, this strategy allows quantification of subcellular parameters at the level of the individual cell with high spatiotemporal resolution, both before and after experimental stimulation. Importantly, the image-based nature of the method allows extracting morphological parameters in addition to signal intensities. The combined feature set is used for explorative and statistical multivariate data analysis to detect differences between subpopulations, cell types and/or treatments. Here, a detailed description of the assay is provided, along with an example experiment that proves its potential for unambiguous discrimination between cellular states after chemical perturbation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app