Add like
Add dislike
Add to saved papers

Estrogen Receptor Mediates the Radiosensitivity of Triple-Negative Breast Cancer Cells.

BACKGROUND This study aimed to evaluate differences in the radiosensitivities of triple-negative breast cancer (TNBC) and luminal-type breast cancer cells and to investigate the effects of estrogen receptor (ER) expression on the biological behaviors of the cells. MATERIAL AND METHODS Colony-forming assays were performed to detect differences in radiosensitivities in breast cancer cell lines. Gene transfection technology was used to introduce the expression of ERα in TNBC cells to compare the difference in radiosensitivity between the TNBC cells and ERα transfected cells. CCK-8 assays were used to observe changes in the proliferation of TNBC cells after ERα transfection. Immunofluorescence was used to detect the number of γH2AX foci in nuclei. Flow cytometry was used to detect changes in cell cycle distribution and apoptosis. Western blotting was used to detect changes in autophagy-associated proteins. RESULTS The radioresistance of the TNBC cell line MDA-MB-231 (231 cells) was greater than that of ERα-positive luminal-type breast cancer cell line MCF-7. Moreover, 231 cell proliferation and radioresistance decreased after ERα transfection. Interestingly, ERα-transfected 231 cells showed increased double-stranded breaks and delayed repair compared with 231 cells, and ERα-transfected 231 cells showed increased G2/M phase arrest and apoptosis after irradiation compared with those in 231 cells. ERα transfection in 231 cells reduced autophagy-related protein expression, suggesting that autophagy activity decreased in 231 ER-positive cells after irradiation. CONCLUSIONS TNBC cells were more resistant to radiation than luminal-type breast cancer cells. ERα expression may have major roles in modulating breast cancer cell radiosensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app