Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Electrochemical Growth of Copper Hydroxy Double Salt Films and Their Conversion to Nanostructured p-Type CuO Photocathodes.

New electrochemical synthesis methods were developed to produce copper hydroxy double salt(Cu-HDS) films with four different intercalated anions (NO3 - , SO4 2- , Cl- , and dodecyl sulfate (DS)) as pure crystalline films as deposited (Cu2 NO3 (OH)3 , Cu4 SO4 (OH)6 , Cu2 Cl(OH)3 , and Cu2 DS(OH)3 ). These methods are based on p-benzoquinone reduction, which increases the local pH at the working electrode and triggers the precipitation of Cu2+ and appropriate anions as Cu-HDS films on the working electrode. The resulting Cu-HDS films could be converted to crystalline Cu(OH)2 and CuO films by immersing them in basic solutions. Because Cu-HDS films were composed of 2D crystals as a result of the atomic-level layered structure of HDS, the CuO films prepared from Cu-HDS films have unique low-dimensional nanostructures, creating high surface areas that cannot be obtained by direct deposition of CuO, which has a 3D atomic-level crystal structure. The resulting nanostructures allowed the CuO films to facilitate electron-hole separation and demonstrate great promise for photocurrent generation when investigated as a photocathode for a water-splitting photoelectrochemical cell. Electrochemical synthesis of Cu-HDS films and their facile conversion to CuO films will provide new routes to tune the morphologies and properties of the CuO electrodes that may not be possible by other synthesis means.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app