JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis.

An increasing number of studies show how changes in intracellular metabolic pathways alter tumor and immune cell function. However, little information about metabolic changes in other cell types, including synovial fibroblasts, is available. In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) are the most common cell type at the pannus-cartilage junction and contribute to joint destruction through their production of cytokines, chemokines, and matrix-degrading molecules and by migrating and invading joint cartilage. In this review, we show that these cells differ from healthy synovial fibroblasts, not only in their marker expression, proto-oncogene expression, or their epigenetic changes, but also in their intracellular metabolism. These metabolic changes must occur due to the stressful microenvironment of inflamed tissues, where concentrations of crucial nutrients such as glucose, glutamine, and oxygen are spatially and temporally heterogeneous. In addition, these metabolic changes will increase metabolite exchange between fibroblast and other synovial cells, which can potentially be activated. Glucose and phospholipid metabolism as well as bioactive lipids, including sphingosine-1-phosphate and lysophosphatidic acid, among others, are involved in FLS activation. These metabolic changes likely contribute to FLS involvement in aspects of immune response initiation or abnormal immune responses and strongly contribute to joint destruction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app