Add like
Add dislike
Add to saved papers

Substance P/dexamethasone-encapsulated PLGA scaffold fabricated using supercritical fluid process for calvarial bone regeneration.

Poly(lactic-co-glycolic acid) (PLGA) scaffolds encapsulated with substance P (SP) and dexamethasone (Dex) by the supercritical CO2 foaming method were fabricated to treat calvarial bone. We compared the release profiles of SP and Dex according to the incorporation methods using encapsulation or dipping. Ninety percent of the SP or Dex molecules in the scaffolds prepared by the encapsulating method were released by day 14 or day 6, respectively. In vivo real-time assays for human mesenchymal stem cell (hMSC) tracking were performed to confirm the MSC recruitment abilities of the scaffolds. The results showed that the optical intensity of the SP-encapsulated group was 2.59 times higher than that of the phosphate-buffered saline group and 1.3 times higher than that of the SP-dipping group. Furthermore, we compared the angiogenesis activity of the scaffolds. In the SP-encapsulated group, 72.9  ±  2.6% of the vessels showed matured features by 1 week, and it increased to 82.0  ±  4.6% after 4 weeks. We implanted the scaffolds into rat calvarial defects. After 24 weeks, SP- and Dex-encapsulated scaffolds showed 67.1% and 26.2% higher bone formation than those of the Dex-encapsulated group and SP-encapsulated group, respectively, and they formed 36.1% more bone volume compared with the SP- and Dex-dipped scaffolds. Consequently, the results of this study suggest that SP- and Dex-encapsulated scaffolds made by the supercritical CO2 foaming method could be a good treatment modality to treat critical bone defects without cell transplantation by recruiting autologous stem cells and forming new bone tissues. Copyright © 2017 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app