Add like
Add dislike
Add to saved papers

Study on the removal of hormones from domestic wastewaters with lab-scale constructed wetlands with different substrates and flow directions.

Eight wastewater samples from a university campus were analysed between May and July of 2014 to determine the concentration of 14 natural and synthetic steroid hormones. An on-line solid-phase extraction combined with ultra-high performance liquid chromatography coupled with mass spectrometry (on-line SPE-UHPLC-MS/MS) was used as extraction, pre-concentration and detection method. In the samples studied, three oestrogens (17β-estradiol, estrone and estriol), two androgens (boldenone and testosterone), three progestogens (norgestrel, progesterone and norethisterone) and one glucocorticoid (prednisone) were detected. The removal of hormones was studied in primary and secondary constructed wetland mesocosms. The porous media of the primary constructed wetlands were palm tree mulch. These reactors were used to study the effect of water flow, i.e. horizontal (HF1) vs vertical (VF1). The latter was more efficient in the removal of 17β-estradiol (HF1: 30%, VF1: 50%), estrone (HF1: 63%, VF1: 85%), estriol (100% both), testosterone (HF1: 45%, VF1: 73%), boldenone (HF1:-77%, VF1: 100%) and progesterone (HF1: 84%, VF1: 99%). The effluent of HF1 was used as influent of three secondary constructed wetland mesocosms: two double-stage vertical flow constructed wetlands, one with gravel (VF2gravel) and one with palm mulch (VF2mulch), and a mineral-based, horizontal flow constructed wetland (HFmineral). VF2mulch was the most efficient of the secondary reactors, since it achieved the complete removal of the hormones studied with the exception of 17ß-estradiol. The significantly better removal of BOD and ammonia attained by VF2mulch suggests that the better aeration of mulch favoured the more efficient removal of hormones.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app