Add like
Add dislike
Add to saved papers

Biodegradation of α-endosulfan via hydrolysis pathway by Stenotrophomonas maltophilia OG2.

3 Biotech 2017 June
Stenotrophomonas maltophilia OG2 was isolated from the intestine of cockroaches that was collected from a cow barn contaminated some pesticides belong to pyrethroid and organochlorine groups. OG2 was able to degrade α-endosulfan in non sulfur medium (NSM) as a sole sulfur source for growth within 10 days of incubation. The effects of some growth parameters on endosulfan biodegradation by OG2 was studied and found that the biodegradation was significantly affected by the endosulfan concentrations, pH and temperature. Experimental results obtained in different conditions show that the optimum concentration of α-endosulfan, pH and temperature were 100 mg/L, 8.0 and 30 °C, respectively. Under these conditions, the bacterium degraded 81.53% of the α-endosulfan after 10 days. The concentration of α-endosulfan and its metabolites was determined by HPLC. Endosulfan ether, endosulfan lactone and endosulfan diol were the main metabolites in culture, but did not produce toxic metabolite, endosulfan sulfate. These results suggested that S. maltophilia OG2 degrades α-endosulfan via a hydrolysis pathway. The present study indicates that strain OG2 may have potential use in the biodegradation of pesticides contaminated environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app