JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Review of Experimental Modelling in Vascular Access for Hemodialysis.

This paper reviews applications of experimental modelling in vascular access for hemodialysis. Different techniques that are used in in-vitro experiments are bulk pressure and flow rate measurements, Laser Doppler Velocimetry and Vector Doppler Ultrasound point velocity measurements, and whole-field measurements such as Particle Image Velocimetry, Ultrasound Imaging Velocimetry, Colour Doppler Ultrasound, and Planar Laser Induced Fluorescence. Of these methods, the ultrasound techniques can also be used in-vivo, to provide realistic boundary conditions to in-vitro experiments or numerical simulations. In the reviewed work, experimental modelling is mainly used to support computational models, but also in some cases as a tool on its own. It is concluded that, to further advance the utility of computational modelling in vascular access research, a rigorous verification and validation procedure should be adopted. Experimental modelling can play an important role in both in-vitro validation, and the quantification of the accuracy, uncertainty, and reproducibility of in-vivo measurement methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app