Add like
Add dislike
Add to saved papers

Light-Driven, Caterpillar-Inspired Miniature Inching Robot.

Liquid crystal elastomers are among the best candidates for artificial muscles, and the materials of choice when constructing microscale robotic systems. Recently, significant efforts are dedicated to designing stimuli-responsive actuators that can reproduce the shape-change of soft bodies of animals by means of proper external energy source. However, transferring material deformation efficiently into autonomous robotic locomotion remains a challenge. This paper reports on a miniature inching robot fabricated from a monolithic liquid crystal elastomer film, which upon visible-light excitation is capable of mimicking caterpillar locomotion on different substrates like a blazed grating and a paper surface. The motion is driven by spatially uniform visible light with relatively low intensity, rendering the robot "human-friendly," i.e., operational also on human skin. The design paves the way toward light-driven, soft, mobile microdevices capable of operating in various environments, including the close proximity of humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app