Add like
Add dislike
Add to saved papers

Reducing Friction in the Eye: A Comparative Study of Lubrication by Surface-Anchored Synthetic and Natural Ocular Mucin Analogues.

Biomaterials used in the ocular environment should exhibit specific tribological behavior to avoid discomfort and stress-induced epithelial damage during blinking. In this study, two macromolecules that are commonly employed as ocular biomaterials, namely, poly(vinylpyrrolidone) (PVP) and hyaluronan (HA), are compared with two known model glycoproteins, namely bovine submaxillary mucin (BSM) and α1 -acid glycoprotein (AGP), with regard to their nonfouling efficiency, wettability, and tribological properties when freely present in the lubricant, enabling spontaneous adsorption, and when chemisorbed under low contact pressures. Chemisorbed coatings were prepared by means of photochemically triggered nitrene insertion reactions. BSM and AGP provided boundary lubrication when spontaneously adsorbed in a hydrophobic contact with a coefficient of friction (CoF) of ∼0.03-0.04. PVP and HA were found to be excellent boundary lubricants when chemisorbed (CoF ≤ 0.01). Notably, high-molecular-weight PVP generated thick adlayers, typically around 14 nm, and was able to reduce the CoF below 0.005 when slid against a BSM-coated poly(dimethylsiloxane) pin in a tearlike fluid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app