Add like
Add dislike
Add to saved papers

Cytomorphological and nitrogen metabolic enzyme analysis of psychrophilic and mesophilic Nostoc sp.: a comparative outlook.

3 Biotech 2017 June
Cyanobacterial diazotrophs play a significant role in environmental nitrogen economy despite their habitat either tropical or polar. However, the phenomenon by which it copes with temperature induced stress is poorly understood. Temperature response study of psychrophilic and mesophilic Nostoc strains explores their adaptive mechanisms. The selected psychrophilic and mesophilic strains were confirmed as Nostoc punctiforme and Nostoc calcicola respectively, by ultrastructure and 16S rDNA phylogeny. The psychrophilic strain has extensive glycolipid and polysaccharide sheath along with characteristic deposition of cyanophycin, polyhydroxybutyrate granules, and carboxysomes. This is possibly an adaptive strategy exhibited to withstand the freezing temperature and high intense of ultraviolet rays. The biomass measured in terms of dry weight, protein, and chlorophyll indicated a temperature dependant shift in both the psychrophilic and mesophilic strains and attained maximum growth in their respective temperature niches. At low temperature, psychrophilic organism exhibited nitrogenase activity, while mesophilic strains did not. The maximum glutamine synthetase activity was observed at 4 °C for psychrophilic and 37 °C for mesophilic strains. Activity at 4 °C in psychrophilic strains revealed their energetic mechanism even at low temperature. The nitrate and nitrite reductase of both psychrophilic and mesophilic strains showed maximum activity at 37 °C denoting their similar nitrogen assimilating mechanisms for combined nitrogen utilization. The activity studies of nitrogen fixation/assimilation enzymes have differential effects at varying temperatures, which provide valuable insights of physiological contribution and role of Nostoc strains in the biological nitrogen cycle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app