Add like
Add dislike
Add to saved papers

Silencing of ATM expression by siRNA technique contributes to glioma stem cell radiosensitivity in vitro and in vivo.

Evidence has shown that both high expression of the ataxia-telangiectasia mutated (ATM) gene and glioma stem cells (GSCs) are responsible for radioresistance in glioma. Thus, we hypothesized that brain tumor radiosensitivity may be enhanced via silencing of the ATM gene in GSCs. In the present study we successfully induced GSCs from two cell lines and used CD133 and nestin to identify GSCs. A lentivirus was used to deliver siRNA-ATMPuro (A group) to GSCs prior to radiation, while siRNA-HKPuro (N group) and GSCs (C group) were used as negative and blank controls, respectively. RT-qPCR and western blotting were performed to verify the efficiency of the siRNA-ATM technique. The expression of the ATM gene and ATM protein were significantly downregulated post-transfection. Cell Counting Kit-8 (CCK-8) and colony formation assays revealed that the A group demonstrated weak cell proliferation and lower survival fractions post-irradiation compared to the C/N groups. Flow cytometry was used to examine the percentage of cell apoptosis and G2 phase arrest, which were both higher in the A group than in the C/N groups. We found that the comet tail percentage evaluated by comet assay was higher in the A group than in the C/N groups. After radiation treatment, three radiosensitive genes [p53, proliferating cell nuclear antigen (PCNA), survivin] exhibited a decreasing tendency as determined by RT-qPCR. Mice underwent subcutaneous implantation, followed by radiation, and the resulting necrosis and hemorrhage were more obvious in the A group than in the N groups. In conclusion, silencing of ATM via the siRNA technique improved radiosensitivity of GSCs both in vitro and in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app