Add like
Add dislike
Add to saved papers

MARK2 inhibits the growth of HeLa cells through AMPK and reverses epithelial-mesenchymal transition.

Microtubule affinity-regulating kinases (MARKs; MARK1, MARK2, MARK3 and MARK4) act directly downstream of LKB1, the multitasking tumor-suppressor kinase, and thereby mediate its biological effects. Current understanding of the function of MARKs is greatly restricted to regulation of cell polarity. However, whether or how MARKs contribute to cellular growth control remains largely unknown. In the present study, we utilized an inducible lentiviral expression system that allows rapid MARK expression in LKB1-deficient HeLa cells, and characterized additional functions of MARKs: overexpression of MARK2 in HeLa cells resulted in a decrease in cell growth, inhibition of colony formation and arrest in G1 cell cycle phase, with AMPK as the putative downstream effector upregulating the expression of p21 and p16. MARK2 was found to play a role in F-actin reorganization and to contribute to reversal of epithelial‑mesenchymal transition (EMT) as exemplified in the case of HeLa cells that exhibited phenotypic changes, reduced cell migration and invasion. Our findings unveil the coordinated regulation of cell growth and EMT mediated by MARK2, and also provide new insights into the mechanisms underlying the anti-metastatic activity of MARK2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app