Add like
Add dislike
Add to saved papers

How birds direct impulse to minimize the energetic cost of foraging flight.

Birds frequently hop and fly between tree branches to forage. To determine the mechanical energy trade-offs of their bimodal locomotion, we rewarded four Pacific parrotlets with a seed for flying voluntarily between instrumented perches inside a new aerodynamic force platform. By integrating direct measurements of both leg and wing forces with kinematics in a bimodal long jump and flight model, we discovered that parrotlets direct their leg impulse to minimize the mechanical energy needed to forage over different distances and inclinations. The bimodal locomotion model further shows how even a small lift contribution from a single proto-wingbeat would have significantly lengthened the long jump of foraging arboreal dinosaurs. These avian bimodal locomotion strategies can also help robots traverse cluttered environments more effectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app