Add like
Add dislike
Add to saved papers

Stromal cell-derived factor-1α and transforming growth factor-β1 synergistically facilitate migration and chondrogenesis of synovium-derived stem cells through MAPK pathways.

The clinical translation of tissue engineering methods is confined by the limited external cell sources, which is hopefully to be addressed by the cell guidance approach as cytokine-induced homing and differentiation of the patients' autologous cells. Synovium-derived stem cells (SDSCs) are a potent cell source for cartilage restoration due to its intrinsic proximity and tissue-specific chondrogenic capacity. In this study, stromal cell-derived factor-1α (SDF-1α) in combination with transforming growth factor β1 (TGF-β1) were used to induce SDSCs migration and chondrogenesis in vitro. The migration capacity was evaluated by transwell assay and for chondrogenic evaluation, the expression of Sox9, ACAN and COL2A1 were assessed by quantitative RT-PCR while the expression of sulfated GAG and collagen II were evaluated by Alcian Blue stain and immunohistochemistry respectively. Our data showed that SDF-1α/CXC chemokine receptor 4 (CXCR4) was involved in SDSCs migration through phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. Exogenous TGF-β1 enhanced SDF-1α-induced SDSCs migration in a concentration and time-dependent manner through CXCR4, evidenced as complete blockage by AMD3100, the CXCR4 antagonist and this effect was mediated by extracellular regulated protein kinases (ERK) activation. Moreover, the addition of SDF-1α augmented the TGF-β1-induced SDSCs chondrogenesis, evidenced by the increased pellet sizes and the expressions of COL 2A1, ACAN and Sox9. This effect was related to c-Jun N-terminal kinase (JNK) activation. Collectively, these results suggest that SDF-1α and TGF-β1 interacts with each other and synergistically enhance the SDSCs migration and chondrogenesis through MAPK pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app