JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

A Screen for rfaH Suppressors Reveals a Key Role for a Connector Region of Termination Factor Rho.

MBio 2017 May 31
RfaH activates horizontally acquired operons that encode lipopolysaccharide core components, pili, toxins, and capsules. Unlike its paralog NusG, which potentiates Rho-mediated silencing, RfaH strongly inhibits Rho. RfaH is recruited to its target operons via a network of contacts with an elongating RNA polymerase (RNAP) and a specific DNA element called ops to modify RNAP into a pause- and NusG-resistant state. rfaH null mutations confer hypersensitivity to antibiotics and detergents, altered susceptibility to bacteriophages, and defects in virulence. Here, we carried out a selection for suppressors that restore the ability of a Δ rfaH mutant Escherichia coli strain to grow in the presence of sodium dodecyl sulfate. We isolated rho , rpoC , and hns suppressor mutants with changes in regions previously shown to be important for their function. In addition, we identified mutants with changes in an unstructured region that connects the primary RNA-binding and helicase domains of Rho. The connector mutants display strong defects in vivo , consistent with their ability to compensate for the loss of RfaH, and act synergistically with bicyclomycin (BCM), which has been recently shown to inhibit Rho transformation into a translocation-competent state. We hypothesize that the flexible connector permits the reorientation of Rho domains and serves as a target for factors that control the motor function of Rho allosterically. Our results, together with the existing data, support a model in which the connector segment plays a hitherto overlooked role in the regulation of Rho-dependent termination. IMPORTANCE The transcription termination factor Rho silences foreign DNA, reduces antisense transcription, mediates surveillance of mRNA quality, and maintains genome integrity by resolving transcription-replication collisions and deleterious R loops. Upon binding to RNA, Rho undergoes a rate-limiting transition from an open "lock washer" state to a closed ring capable of processive translocation on, and eventually the release of, the nascent transcript. Recent studies revealed that Rho ligands, including its cofactor NusG and inhibitor bicyclomycin, control the ring dynamics allosterically. In this work, we used a genetic selection for suppressors of RfaH, a potent inhibitor of Rho, to isolate a new class of mutations in a flexible region that connects the primary RNA-binding and ATPase/translocase domains of Rho. We propose that the connector is essential for the modulation of Rho activity by different RNA sequences and accessory proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app