JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Epithelial cell behaviours during neurosensory organ formation.

Development 2017 June 2
Perception of the environment in vertebrates relies on a variety of neurosensory mini-organs. These organs develop via a multi-step process that includes placode induction, cell differentiation, patterning and innervation. Ultimately, cells derived from one or more different tissues assemble to form a specific mini-organ that exhibits a particular structure and function. The initial building blocks of these organs are epithelial cells that undergo rearrangements and interact with neighbouring tissues, such as neural crest-derived mesenchymal cells and sensory neurons, to construct a functional sensory organ. In recent years, advances in in vivo imaging methods have allowed direct observation of these epithelial cells, showing that they can be displaced within the epithelium itself via several modes. This Review focuses on the diversity of epithelial cell behaviours that are involved in the formation of small neurosensory organs, using the examples of dental placodes, hair follicles, taste buds, lung neuroendocrine cells and zebrafish lateral line neuromasts to highlight both well-established and newly described modes of epithelial cell motility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app