Journal Article
Review
Add like
Add dislike
Add to saved papers

Understanding the GPCR biased signaling through G protein and arrestin complex structures.

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and are important drug targets for many human diseases. The determination of the 3-D structure of GPCRs and their signaling complexes has promoted our understanding of GPCR biology and provided templates for structure-based drug discovery. In this review, we focus on the recent structure work on GPCR signaling complexes, the β2-adrenoreceptor-Gs and the rhodopsin-arrestin complexes in particular, and highlight the structural features of GPCR complexes involved in G protein- and arrestin-mediated signal transduction. The crystal structures reveal distinct structural mechanisms by which GPCRs recruit a G protein and an arrestin. A comparison of the two complex structures provides insight into the molecular mechanism of functionally selective GPCR signaling, and a structural basis for the discovery of G protein- and arrestin-biased treatments of human diseases related to GPCR signal transduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app