Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

d-Alanine 2, Leucine 5 Enkephaline (DADLE)-mediated DOR activation augments human hUCB-BFs viability subjected to oxidative stress via attenuation of the UPR.

Human mesenchymal stem cells (hMSCs) although being potent in repairing injured or ischemic tissues, their success regarding tissue-regenerative approaches are hindered by the paucity in their viability. The elevated levels of reactive oxygen species (ROS) in damaged sites provoke the pernicious effects of donor MSC survival. In the present study, the effect of delta-opioid receptor (DOR) activation on human umbilical cord-blood borne fibroblasts (hUCB-BFs) survival under oxidative stress (H2 O2 ) was evaluated. Oxidative stress which is known to trigger pathological conditions of the unfolded protein response (UPR) leads to endoplasmic reticulum stress. Upon its activation by D-Alanine 2, Leucine 5 Enkephaline (DADLE, selective DOR agonist) in hUCB-BFs under oxidative stress, a significant down regulation (~2 folds) of key UPR genes was observed as determined by qPCR, Thioflavin-T protein aggregation assay and western blot analysis. Concomitantly, the oxidative stress-mediated cell-death was ameliorated and the viable-cells' percentage was enhanced following DOR activation. The intracellular ROS production upon H2 O2 treatment as determined by CM-H2 DCFDA staining was repressed, the anti-apoptotic marker Bcl-2 was upregulated along with a significant suppression in the expression levels of pro-apoptotic proteins Bax and Bad upon DOR activation. Upon subsequent treatment with naltrindole, the effects of DADLE-induced cytoprotection were reverted significantly. These results propound the role of DADLE-mediated DOR-activation on improvement of the viability, which might succour successful hUCB-BFs transplants and greatly absolve the inefficacy of tissue-specific engineered transplants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app