Add like
Add dislike
Add to saved papers

Tissue Uptake, Distribution, and Elimination of Perfluoroalkyl Substances in Juvenile Perch through Perfluorooctane Sulfonamidoethanol Based Phosphate Diester Dietary Exposure.

Perfluorooctane sulfonamidoethanol based phosphate diester (SAmPAP) is a potential perfluorooctanesulfonate (PFOS) precursor. To examine whether SAmPAP exposure would result in fish contamination by perfluoroalkyl and polyfluoroalkyl substances (PFASs), juvenile Eurasian perch were dietarily exposed to this compound (dosed group) or exposed to the same tank water but fed control feed (control group). SAmPAP and metabolites were monitored in the muscle, liver, and serum during the 45-day exposure phase and 35-day depuration phase. SAmPAP was only detected in the dosed group and the absorption efficiency (0.04-2.25%) was very low, possibly related to its low bioavailability in the gastrointestinal tract, steric constraints in crossing biological membranes, and clearing by enterohepatic circulation. Although SAmPAP was biotransformed and eliminated at a slow rate (t1/2 > 18 days), its biomagnification factor was low. The observed metabolites in fish were N-ethyl perfluorooctane sulfonamidoacetic acid, perfluorooctane sulfonamidoacetic acid, perfluorooctane sulfonamide, and PFOS. Considering that SAmPAP was the only source of PFASs in the tanks, the occurrence of metabolites indicates that SAmPAP could be biotransformed in fish and contribute to PFOS bioaccumulation. However, levels of metabolites were not significantly different in the dosed and control groups, indicating that metabolite excretion followed by re-exposure to these metabolites from water was the main uptake route.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app