Add like
Add dislike
Add to saved papers

DLPNO-CCSD(T) scaled methods for the accurate treatment of large supramolecular complexes.

In this work, we present scaled variants of the DLPNO-CCSD(T) method, dubbed as (LS)DLPNO-CCSD(T) and (NS)DLPNO-CCSD(T), to obtain accurate interaction energies in supramolecular complexes governed by noncovalent interactions. The novel scaled schemes are based on the linear combination of the DLPNO-CCSD(T) correlation energies calculated with the standard (LoosePNO and NormalPNO) and modified (Loose2PNO and Normal2PNO) DLPNO-CCSD(T) accuracy levels. The scaled DLPNO-CCSD(T) variants provide nearly TightPNO accuracy, which is essential for the quantification of weak noncovalent interactions, with a noticeable saving in computational cost. Importantly, the accuracy of the proposed schemes is preserved irrespective of the nature and strength of the supramolecular interaction. The (LS)DLPNO-CCSD(T) and (NS)DLPNO-CCSD(T) protocols have been used to study in depth the role of the CH-π versus π-π interactions in the supramolecular complex formed by the electron-donor truxene-tetrathiafulvalene (truxTTF) and the electron-acceptor hemifullerene (C30 H12 ). (NS)DLPNO-CCSD(T)/CBS calculations clearly reveal the higher stability of staggered (dominated by CH-π interactions) versus bowl-in-bowl (dominated by π-π interactions) arrangements in the truxTTF•C30 H12 heterodimer. Hemifullerene and similar carbon-based buckybowls are therefore expected to self-assemble with donor compounds in a richer way other than the typical concave-convex π-π arrangement found in fullerene-based aggregates. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app