Add like
Add dislike
Add to saved papers

Compensatory Muscle Activation During Unstable Overhead Squat Using a Water-filled Training Tube.

Glass, SC, and Albert, RW. Compensatory muscle activation during unstable overhead squat using a water-filled training tube. J Strength Cond Res 32(5): 1230-1237, 2018-The purpose of this study was to assess compensatory muscle activation of core and support muscle during an overhead squat using a water-filled training tube. Eleven experienced weightlifting (age = 20.10 ± 0.99, mass 89.17 ± 6.88 kg) men completed 3, 30-second trials of an overhead squat using an 11.4 kg tube that was partially filled with water. A central valve allowed 3 conditions of water movement: 50% open, 100% open, and a stable(S), closed valve condition. Subjects completed 8-10 repetitions within each condition. Electromyographic (EMG) electrodes were placed over the belly of the vastus lateralis, deltoid, rectus abdominus, and paraspinal muscles and recorded during concentric and eccentric (ECC) phases. Integrated EMG were computed and converted to percent maximal voluntary contraction (%MVC). Compensatory activation was assessed using the natural log of the coefficient of variation of %MVC across repetitions. A 1-way repeated-measures analysis of variance across (phase, condition) was used. Significant compensatory muscle activation was seen in the deltoid muscle during ECC (100% open = 3.60 ± 0.50 > stable LogCV = 3.06 ± 0.45). In addition, paraspinal muscle activity was also more variable during the ECC phase (50% open LogCv = 3.28 ± 0.26 > stable = 2.77 ± 0.67). We conclude that the water-filled training tube induces compensatory muscle activation in the deltoid and paraspinal muscles during the ECC phase of the overhead squat.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app