JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Fluorescent RNA Forced-Intercalation Probe as a Pan-Selective Marker for Influenza A Virus Infection.

The influenza A virus (IAV) genome is segmented into eight viral ribonucleoproteins, each expressing a negatively oriented viral RNA (vRNA). Along the infection cycle, highly abundant single-stranded small viral RNAs (svRNA) are transcribed in a segment-specific manner. The sequences of svRNAs and of the vRNA 5'-ends are identical and highly conserved among all IAV strains. Here, we demonstrate that these sequences can be used as a target for a pan-selective sensor of IAV infection. To this end, we used a complementary fluorescent forced-intercalation RNA (IAV QB-FIT) probe with a single locked nucleic acid substitution to increase brightness. We demonstrated by fluorescence in situ hybridization (FISH) that this probe is suitable and easy to use to detect infection of different cell types by a broad variety of avian, porcine, and human IAV strains, but not by other influenza virus types. IAV QB-FIT also provides a useful tool to characterize different infection states of the host cell.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app