JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

PCLO rs2522833-mediated gray matter volume reduction in patients with drug-naive, first-episode major depressive disorder.

Major depressive disorder (MDD) has been linked to differences in the volume of certain areas of the brain and to variants in the piccolo presynaptic cytomatrix protein (PCLO), but the relationship between PCLO and brain morphology has not been studied. A single-nucleotide polymorphism (SNP) in PCLO, rs2522833, is thought to affect protein stability and the activity of the hypothalamic-pituitary-adrenal axis. We investigated the relationship between cortical volume and this SNP in first-episode, drug-naive patients with MDD or healthy control subjects. Seventy-eight participants, including 30 patients with MDD and 48 healthy control subjects, were recruited via interview. PCLO rs2522833 genotyping and plasma cortisol assays were performed, and gray matter volume was estimated using structural magnetic resonance images. Among the individuals carrying the C-allele of PCLO rs2522833, the volume of the left temporal pole was significantly smaller in those with MDD than in healthy controls (family-wise error-corrected, P=0.003). No differences were detected in other brain regions. In addition, the C-carriers showed a larger volume reduction in the left temporal pole than those in the individuals with A/A genotype (P=0.0099). Plasma cortisol levels were significantly higher in MDD-affected C-carriers than in the healthy control C-carriers (12.76±6.10 vs 9.31±3.60 nm, P=0.045). We conclude that PCLO SNP rs2522833 is associated with a gray matter volume reduction in the left temporal pole in drug-naive, first-episode patients with MDD carrying the C-allele.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app