Add like
Add dislike
Add to saved papers

Identification of interstitial-like defects in a computer model of glassy aluminum.

Computer simulation shows that glassy aluminum produced by rapid melt quenching contains a significant number of 'defects' similar to dumbbell (split) interstitials in the crystalline state. Although these 'defects' do not have any clear topological pattern as opposed to the crystal, they can be uniquely identified with the same properties which are characteristic of these defects in the crystalline structure, i.e. strong sensitivity to applied shear stress, specific local shear strain fields and distinctive low-/high-frequency peculiarities in the vibration spectra of 'defective' atoms. This conclusion provides new support for the interstitialcy theory, which was found to give consistent and verifiable explanations for a number of relaxation phenomena in metallic glasses and their relationship with the maternal crystalline state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app